The Basics of Ventilator Management

What are we really trying to do here

Peter Lutz, MD
Pulmonary and Critical Care Medicine
Pulmonary Associates, Mobile, Al

Overview

• Approach to the physiology of the lung and physiological goals of mechanical Ventilation
• Different Modes of Mechanical Ventilation and when they are indicated
• Ventilator complications
• Ventilator Weaning
• Some basic trouble shooting

How we breath

http://people.eku.edu/ritchisong/301notes6.htm
How a Mechanical Ventilator works

• The First Ventilator - the Iron Lung
 – Worked by creating negative atmospheric pressure around the lung, simulating the negative pressure of inspiration

How a Mechanical Ventilator works

• The Modern Ventilator
 – The invention of the demand oxygen valve for WWII pilots if the basis for the modern ventilator

How a Mechanical Ventilator works

• The Modern Ventilator
 – How it works

Flow Sensor
Pressure Sensor
Inspiratory Limb
Expiratory Limb
Ventilator
Capillary Limb
So what are the goals of Mechanical Ventilation

• What are we trying to control
 – Oxygenation
 • Amount of oxygen we are getting into the blood
 – Ventilation
 • The movement of air into and out of the lungs, mainly effects the pH and level of CO\(_2\) in the blood stream

<table>
<thead>
<tr>
<th>Lab</th>
<th>Oxygenation</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Ox</td>
<td>Saturation >88-90%</td>
<td>pCO(_2) (40mmHg)</td>
</tr>
<tr>
<td>Arterial Blood Gas(ABG)</td>
<td>(P_O_2) (75-100 mmHg)</td>
<td>pH (~7.4)</td>
</tr>
</tbody>
</table>

Oxygenation

How do we effect Oxygenation

• Fraction of Inspired Oxygen (FiO\(_2\))
 – Percentage of the gas mixture given to the patient that is Oxygen
 • Room air is 21%
 • On the vent ranges from 30-100%

• So if the patient’s blood oxygen levels are low, we can just increase the amount of oxygen we give them
How do we effect Oxygenation

• Positive End Expiratory Pressure (PEEP)
 – positive pressure that will remains in the airways at the end of the respiratory cycle (end of exhalation) that is greater than the atmospheric pressure in mechanically ventilated patients.

– Has two primary Effects
 • Increases the uptake of Oxygen into the blood stream
 – Henry's law: the solubility of a gas in a liquid is directly proportional to the pressure of that gas above the surface of the solution.
 – So the more pressure on the oxygen the more of it will pass across the alveolocapillary membrane and increase the oxygen content in the blood.
 • Helps splint collapsed or partially consolidated airways open recruiting more alveoli for gas exchange
 – Reduces atelectasis
 – Main effect is on Oxygenation but does have a minimal effect on ventilation but should not be used for this purpose
How do we effect Oxygenation

• Positive End Expiratory Pressure (PEEP)
 – Extrinsic PEEP vs Intrinsic PEEP (Auto-PEEP)
 • Intrinsic PEEP is increasing intrathoracic pressure due to incomplete exhalation of air
 – Mainly seen in obstructive lung disease: COPD and Asthma
 – Due to collapse of the airways on exhalation

Result is a build up of pressure that decreases Cardiac Blood Return that then results in hypotension

PEEP from the Vent is not the same as and does not result in AutoPEEP

– Actually reduces it by preventing airway collapse

Quick test: detach the ET tube from the vent tube for 30-45 secs, reattach and immediately repeat the BP. If auto PEEP should see an immediate improvement.
How do we effect Ventilation

• The amount of ventilation effects the amount of CO₂ eliminated from the body
 ➢ Varies the amount of CO₂ in the blood (pCO₂)
 ➢ This varies the pH
• If the patient is:
 — Acidotic- you increase the ventilation to try and eliminate more CO₂ and buffer to normal
 — Alkalotic- you decrease the ventilation to try and retain more CO₂ to buffer to normal

How do we effect Ventilation

• The amount of ventilation is expressed as:
 — Minute Ventilation (MV or V₅₀)
 • The amount of air cycled through the lung in 1 minute
 — Normal at rest is 5-6 l/min
 • Minute Ventilation is calculated by
 \[\text{Respiratory Rate} \times \text{Tidal Volume (V₅₀)} \]
 — Tidal Volume- the amount of air in 1 breath expressed in CCs

How do we effect Ventilation

• Respiratory Rate
 — Increasing it will blow off more CO₂ and raise the pH
 — Decreasing it will hold onto to CO₂ and drop the pH
• Tidal Volume
 — Increasing the size will blow off more CO₂ and raise the pH
 — Decreasing the size will hold onto to CO₂ and drop the pH
Let's put these two concepts together
Oxygenation + Ventilation

Quick approach to Vent and ABG

Ventilator Modes

- Most Ventilator Modes are focused with how we control the MV - mainly through different ways of delivering the Tidal Volume
- Ventilator Modes can be broken down into two rough categories based on what we set as the fixed value vs what we allow to vary with each breath
 - Volume driven Modes where we set the volume of each breath
 - Pressure driven Modes where we set how much pressure we use to give each breath
The Relationship Between Volume and Pressure

Pulmonary Compliance

- The measure of the lungs ability to stretch and expand
- On vent this is exhibited by the relationship between Volume and Pressure
 - Compliance = $\Delta V / \Delta P$

Pressure also Influence by Airway Resistance

- Resistance in the Airways increases the amount of pressure needed to deliver a full breath
- Resistance is mainly driven by the Radii of the airways
Ventilator Modes

<table>
<thead>
<tr>
<th>Volume Driven</th>
<th>TV</th>
<th>Driving pressure</th>
<th>Peep</th>
<th>Peak Pressure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Mechanical Ventilation (CMV)</td>
<td>Set</td>
<td>Fixed</td>
<td>Varies</td>
<td>Varies</td>
<td>Oldest form, rarely seen today, rate is totally fixed, patient can not get additional breaths, mainly only used in OR anesthesia machines.</td>
</tr>
<tr>
<td>Assist Control Ventilation (AC)</td>
<td>Set</td>
<td>Set</td>
<td>Varies</td>
<td>Set</td>
<td>Rate and TV will give additional breaths if patient attempts them.</td>
</tr>
<tr>
<td>Pressure Driven</td>
<td>Varies</td>
<td>Set</td>
<td>Set</td>
<td>Set</td>
<td>Used to try to minimize high airway pressures that can result in Barotrauma, vent will give additional breaths over set rate if patient attempts them.</td>
</tr>
<tr>
<td>Pressure Support (PS)</td>
<td>Varies</td>
<td>Varies</td>
<td>Set</td>
<td>Set</td>
<td>Patient fully drives rate, mainly used as a weaning mode.</td>
</tr>
</tbody>
</table>

- **Hybrid Modes**
 - Synchronized Intermittent Mandatory Ventilation (SIMV)
 - Hybrid between AC and PS
 - You set a: Baseline Rate, TV, PS, FIO2 and PEEP
 - Pt gets whatever amount of breaths you set (like CMV), if they wish to breath more then that, then those breaths are done with the PS
Ventilator Modes

• Hybrid Modes
 – Airway Pressure Release Ventilation (APRV)
 • Has been shown to decrease peak airway pressures, improve alveolar recruitment, increase ventilation of dependent lung zones
 • Actually better for oxygenation and ventilation
 • Useful in patients with poor pulmonary compliance
 – Ex chest trauma or super morbid obesity

![Pressure-time curve for APRV](https://www.researchgate.net/profile/Ehab_Daoud2/publication/227860541/figure/fig1/AS:648610702176256@1531652250374/Pressure-time-curve-for-APRV-P-high-is-the-high-CPAP-P-low-is-the-low-CPAP-T.png)

Ventilator Modes

• Hybrid Modes
 – Neutrally Adjusted Ventilatory Assist

![Neutrally Adjusted Ventilatory Assist](https://www.maquet.com/contentassets/c5fd3e44458046d384a04c75a98c5ebf/ventilator-asynchrony.png)

![Neutrally Adjusted Ventilatory Assist](https://thoracickey.com/wp-content/uploads/2016/06/B9781455707928000325_f032-009a-9781455707928.jpg)
Ventilator Modes

- Vent Vs Noninvasive Ventilation (Bipap)
 - NIV Insp Pressure = Pressure Support
 - NIV Exp Pressure = PEEP
 - Only practical difference is how the device is attached to the patient

Specific Disease States:
Acute Respiratory Distress Syndrome (ARDS)

- Respiratory Failure characterized by the acute onset of bilateral alveolar infiltrates and hypoxemia
- Settings
 - Set initial TV at 6 ml/kg PBW
 - Goal of plateau pressure ≤30 cm H₂O
 - Adjust RR to get a pH of 7.25-7.35
 - Permissive Hypercapnia used to lower airway pressures
 - Adjust FiO₂ and PEEP to get a goal PaO₂ 55-80 mmHg or SpO₂ 88-95%

Specific Disease States: COPD/Asthma

- Due to collapse of the airways and respiratory muscle disadvantage from hyperinflation, patient’s are prone to auto-PEEP and worsening air trapping
- Pt may have hypercarbia at baseline, so a high CO₂ may be normal for them, let the pH guide you
- Settings
 - Set initial TV at 6 ml/kg PBW
 - Goal of plateau pressure ≤30 cm H₂O
 - Set rate for and I:E ratio of 1:2-3
 - May need to use higher flows to accomplish this
 - Permissive Hypercapnia is acceptable here
 - May need to increase PEEP to help counter balance auto-PEEP
 - Adjust FiO₂ and PEEP to get a goal PaO₂ 55-80 mmHg or SpO₂ 88-95%
 - May also need to adjust the flow trigger, as some severe COPD patients have trouble producing a enough flow to trigger the vent
Complications of Mechanical Ventilation

- **High Pressures**
 - Barotrauma - stretch injury to the lung
 - Caused by large tidal volumes and high lung pressures
 - Worsens outcomes in ARDS
 - Can lead to Pneumothorax
 - Causes:
 - High Airways Resistance
 - Bronchospasm or ET tube obstruction (mucous plugging vs biting tube)
 - Decreased lung compliance
 - worsening disease (ARDS/CHF), Pneumothorax, mainstem intubation
 - To fix determine underlying problem and fix that

- **High FIO2**
 - High levels of O2 are toxic to the lungs
 - Exact level that is safe has not been determined
 - Goal is ≤50%
 - As long as SpO2 is >90% or pO2 > 60 mmHg
 - To fix
 - Consider increasing PEEP
 - Prone Positioning
 - If available, Inhaled Nitric Oxide
 - **Auto-PEEP**
 - Due to inadequate exhalation time
 - To fix – increase exhalation time

- **Patient-Ventilator Dysynchrony**
 - Causes:
 - Patient discomfort and anxiety
 - Impaired oxygenation/Ventilation
 - Fix:
 - Improve sedation
 - Adjust ventilator mode
 - Paralysis may be considered
Complications of Mechanical Ventilation

- Ventilator Associate Pneumonia
 - Due to interruption of Upper Airway Defenses
 - Impair cough, gag, and Mucous Clearance
 - Colonization of upper airway or GI track
 - Fix:
 - No fool proof method
 - Head of bed at 30-45 deg
 - Minimize time on ventilator
 - Oral Care
 - HiLow suction ET tubes
 - Minimize breaks in vent circuit tubing
 - Drain ventilator circuit condensate

Ventilator Weaning

- Settings should be minimized daily to increase patient’s share of ventilatory effort
 - Minimize amount of FIO₂ (goal 30-40%) and PEEP (goal 5)
 - Decreasing mandatory rate
 - Weaning amount of Pressure support

Ventilator Weaning

- When is the patient ready to wean
 - When the underlying problem has improved
 - FIO₂ ≤40%
 - Minute Ventilation ≤ 10L
 - Mental Status allows patient to follow commands or at least protect airway
Ventilator Weaning

• Spontaneous Breathing Trials (SBTs)
 – Many protocols call for short daily trails 5-10 mins followed by a formal trial for 30min to 2 hrs
 – No vent support- T piece or low level of PEEP(5) or PS(7 mmHg) only
 – Clinical signs of trial failure- Heart rate > 140 BPM, RR >35, SBP >180 or <90, SpO₂ <90, pH <7.32, PaO₂ < 50 mmHg, diaphoresis, agitation

Ventilator Weaning

• Spontaneous Breathing Trials (SBTs)
 – Rapid Shallow Breathing Index (RSBI)
 • RSBI is MV/RR
 • RSBI < 105 shows a small increase in probability of success weaning, however a RSBI >105 shows a significant probability of failing to wean
 – Better negative predictor

Ventilator Troubleshooting

• When you call the Physician don’t just know the settings but know the variable parameters
 – Respiratory rate- the set rate and if and how much patient is over breathing the vent
 – AC- what are the peak pressures and plateau pressures
 – PC or PS- what are the tidal volumes
 – SIMV- peak pressures on the assisted breaths, TV of the pressure supported breaths
Ventilator Troubleshooting

• Respiratory Deterioration with patient on Assist Control

[Diagram showing pressure waveform with labels for PIP, Pplat, compliance, auto-PEEP, and PEEP]

Ventilator Troubleshooting

• Respiratory Deterioration with patient on Assist Control

[Diagram showing changes in PE, PE, and Pplat with labels for Air Leak, Hyperventilation, Increased, and No change]

Major Take Aways

• How to approach the ABG and the Vent
 1. First look at Oxygenation
 • Fix with FiO2 or PEEP
 2. Then look at pH and pCO2
 • Adjust by changing RR or TV
• The different ventilator modes mainly aim at providing ventilation
• Know what mode the vent is in and if it is primarily volume or pressure controlled so you can make understand any changes in the patient
Major Take Aways

- Constantly work to minimize ventilator settings to minimize complication and encourage weaning of the patient.
- When you call the Physician don’t just know the settings but know the variable parameters:
 - Respiratory rate: the set rate and if and how much patient is over breathing the vent.
 - AC: what are the peak pressures and plateau pressures.
 - PC or PS: what are the tidal volumes.
 - SIMV: peak pressures on the assisted breaths, TV of the pressure supported breaths.
- If the vent is on AC, then knowing how the peak and plateau pressures have changed can give you hints to what may be wrong.

References